TECHNICAL LIBRARY U. S. ARMY NATICK LABORATORIES

Biochimica et Biophysica Acta, 292 (1973) 516-533 NATICK, MASS. 01760 © Elsevier Scientific Publishing Company, Amsterdam - Printed in The Netherlands

BBA 46490

ONE-ELECTRON REDOX REACTIONS OF FREE RADICALS IN SOLUTION

RATE OF ELECTRON TRANSFER PROCESSES TO QUINONES

P. S. RAO* and E. HAYON

Pioneering Research Laboratory, U.S. Army Natick Laboratories, Natick, Mass. (U.S.A.) (Received September 12th, 1972)

SUMMARY

A large number of biologically-important organic and inorganic free radicals have been produced in aqueous solutions, using the fast-reaction technique of pulse radiolysis and kinetic absorption spectrophotometry. The reactions of these free radicals with menaquinone (vitamin K_3 , $E_0 = 0.42$ V) were followed by observing the formation kinetics of the semiquinone radical anion of menaquinone, 'MK-. The absorption spectrum of •MK has maxima at 395 nm and 300 nm, with extinction coefficients of $1.1 \cdot 10^4$ and $1.25 \cdot 10^4$ M⁻¹·cm⁻¹, respectively. The p K_a of the radical •MK⁻-H⁺ is 4.6 ± 0.1 . The free radicals were produced by a one-electron oxidation or reduction of various compounds by hydroxyl radicals and solvated electrons, e_{aq}^{-} . Alcohols, sugars, carboxylic acids, amino acids, peptides, aliphatic amines and amides, aromatic and heterocyclic molecules, pyridine derivatives (nicotinamide, NAD+), and transition metal ions have been examined. Significant differences have been observed in both the efficiency (expressed in percentage) and the rate constants of the electron transfer reactions from these free radicals to menaquinone. Absolute rates of electron transfer from approx. $5 \cdot 10^8 - 5 \cdot 10^9 \,\mathrm{M}^{-1} \cdot \mathrm{s}^{-1}$ have been observed for most of the free radicals studied. Information relating to the nature of the radicals and the acid-base properties of these radicals for effective one-electron redox reactions with quinones is indicated.

INTRODUCTION

Many biological oxidation-reduction reactions have been shown to occur via the intermediary of free radicals (see, for example, Blois et al. and King and Klingenberg²). While the presence of free radicals has been demonstrated by means of electron spin resonance spectroscopy and, in some cases, by absorption spectroscopy, very little kinetic information is available to show the reactivity of these free radicals, the nature of the reactions (oxidation or reduction) they undergo and the required properties of the substrates with which they react. These reactions are one-electron transfer reactions, and such electron transport systems have been shown to be necessary for phosphorylation, in mitochondrial and in several other enzymic oxidation reactions.

Permanent address: Radiation Chemistry Section, C.S.M.C.R.I., Bhavnagar, India.

In the presence of suitable electron donors or acceptors, electron transfer can occur effectively between the free radicals and the acceptor³. A large number of biologically-important organic and inorganic free radicals have been produced in this investigation, and the absolute values of the rate constants of these reactions have been determined in aqueous solutions using the fast-reaction technique of pulse radiolysis and kinetic absorption spectrophotometry. A quinone was chosen as the electron acceptor in this work since quinones have been used extensively as mediators in controlling the entry or reverse flow of electrons in biochemical reactions^{2,4}. The function of quinones in biochemical electron transport systems is probably *via* the semiquinone radicals as active intermediates. Menaquinone (vitamin K_3) was selected due to its favorable redox potential, $E_0 = 0.42 \text{ V}$, and its relative solubility in water.

METHODS

The free radicals studied in this work were produced by reaction of substrates (RH₂) with either hydroxyl radicals or hydrated electrons, formed in the radiolysis of water

$$H_2O - \land \land \land \rightarrow OH, e_{aq}$$
, H

with G-values (yield of free radicals per 100 eV of energy absorbed) of 2.75, 2.75 and 0.55, respectively. The radicals were generated according to Reactions 1 and 2:

$$OH + RH_2 \rightarrow RH + H_2O \tag{1}$$

$$e_{aa}^{-} + RH_2 \rightarrow RH_2^{-}$$
 (2)

In order to examine separately the reactions of ${}^{\bullet}RH$ or ${}^{\bullet}RH_2^-$ produced from the solute (RH_2) , the experiments were carried out (a) in aqueous solutions containing N_2O (1 atm) in order to convert e_{aq}^- to OH radicals

$$e_{aq}^- + N_2O \to OH + N_2 + OH^-$$
 (3)

where $k_3 = 5.6 \cdot 10^9 \,\mathrm{M}^{-1} \cdot \mathrm{s}^{-1}$ (Anbar and Neta⁵), or (b) in presence of 1.0 M tertbutanol to scavenge the OH radicals. The tert-butanol radical produced does not absorb above 280 nm and is relatively unreactive⁶. Furthermore, the results to be presented below were shown to be unaffected by the presence of the tert-butanol radicals in the solution. In this way, the free radicals were formed by a one-electron oxidation (using OH radicals) or reduction (using $e_{\rm aq}^{-}$) of the substrate.

The rate constants of the redox reactions of the free radicals with menaquinone (MK) as the electron acceptor,

$$RH + MK \rightarrow MK^- + R + H^+ \tag{4}$$

$$RH_2^- + MK \rightarrow MK^- + RH_2 \tag{5}$$

were determined using the fast-reaction technique of pulse radiolysis. The experimental set-up used and the procedure have been described elsewhere⁶⁻⁸. Briefly, single pulses of approx. 30 ns duration of 2.3-MeV electrons were used and kinetic measure-

ments could be made with a time resolution of approx. $0.1 \,\mu s$. In order to minimize the photolysis of menaquinone and of some of the solutes by the monitoring light from a 450-W Xenon lamp, appropriate cut-off filters as well as a synchronized electric shutter which opened for approx. 7-8 ms were used.

The rates of Reactions 4 and 5 were determined by observing the formation kinetics of 'MK⁻ at 395 nm (see below), the absorption maximum of the semiquinone radical anion. The rates of formation were in all cases pseudo-first-order, dependent upon the concentration of MK. The concentration of MK was varied from $2 \cdot 10^{-5}$ M

10·10⁻⁵ M.

The chemicals used were the highest grade commercially available and were supplied by Calbiochem, Sigma, Cyclochemicals, Schwarz-Mann, Eastman, Baker and Mallinckrodt. Solutions were prepared immediately before carrying out the pulse radiolysis experiments, and the pH adjusted in an oxygen-free medium. HClO₄, KOH, phosphates (1–3 mM) and borates (1–3 mM) were used as buffers. Triply distilled water, further purified by radiolysis and photolysis, was used.

In Figs 1-5 given below, the spectra of the transient species were in all cases corrected for the depletion of menaquinone in the appropriate wavelength range where it absorbs light

where it absorbs light.

The efficiency, expressed in percentage, for the formation of the semiquinone radical of menaquinone from the reaction with various free radicals was determined, in each case, on the basis of the extinction coefficient of ${}^{\bullet}MK^{-}$. This ε was determined directly from the reaction with $e_{\rm aq}^{-}$ (taken as 100% efficient, see below).

For the great majority of the systems studied the free radicals produced do not absorb at 400 nm. In the few cases where they do absorb their extinction coefficient was no more than approx. 15% that of •MK.

RESULTS AND DISCUSSION

Menaquinone (vitamin K_3 , 2-methyl-1,4-naphthaquinone) was selected as the electron acceptor in this work, and the optical absorption spectra of the semiquinone radical and radical anions were determined directly by pulse radiolysis from the reaction with e_{aq}^-

$$e_{aq}^{-} + MK \rightarrow MK^{-} \tag{6}$$

$$\mathbf{M}\mathbf{K}^{-} + \mathbf{H}^{+} \rightleftharpoons \mathbf{M}\mathbf{K}^{-} - \mathbf{H}^{+} \tag{7}$$

where $k_6 = 5.4 \cdot 10^{10} \, \mathrm{M^{-1} \cdot s^{-1}}$. Numerous other semiquinones and ketyl radicals have been produced by this method^{9,10}. Fig. 1 shows the transient spectra of ·MK⁻ and ·MK⁻-H⁺ radicals. The spectrum of ·MK⁻ has maxima at 395 nm and 300 nm and a shoulder at approx. 540 nm with extinction coefficients of $1.1 \cdot 10^4$ and $1.25 \cdot 10^4 \, \mathrm{M^{-1} \cdot cm^{-1}}$, respectively, and decays with $2k = 5.0 \cdot 10^8 \, \mathrm{M^{-1} \cdot s^{-1}}$. The ·MK⁻-H⁺ radical has a maximum at 370 nm with $\varepsilon = 9.7 \cdot 10^3 \, \mathrm{M^{-1} \cdot cm^{-1}}$, the second band could not be determined under these experimental conditions but was found to have a $\lambda_{\mathrm{max}} = 290 \, \mathrm{nm}$ and $\varepsilon = 6.0 \cdot 10^3 \, \mathrm{M^{-1} \cdot cm^{-1}}$. The radical decays faster than the radical anion, with $2k = 3.0 \cdot 10^9 \, \mathrm{M^{-1} \cdot s^{-1}}$. By monitoring the change in absorbance at 400 nm with pH, a "titration-type" curve is obtained (see insert Fig. 1) from which the pK_a of the equilibrium of Reaction 7 was found to be 4.6 ± 0.1 . These

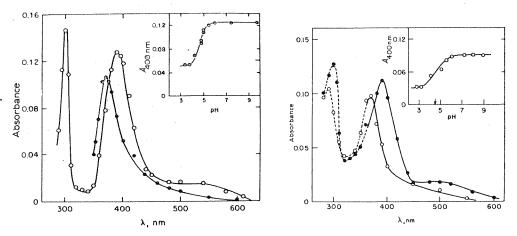


Fig. 1. Optical absorption spectra of the semiquinone radical of menaquinone, produced from the reaction of e_{aq} —with MK (2·10⁻⁴ M), in presence of 0.5 M tert-butanol, 1 atm Ar at pH 7.3 (\odot) and 5·10⁻³ M MK, 2.0 M tert-butanol at pH 3.4 (\bullet). Insert: absorbance at 400 nm versus pH.

Fig. 2. Transient optical absorption spectra produced from the reaction of OH radicals with MK $(2 \cdot 10^{-4} \text{ M}, \text{ in presence of 1 atm N}_2\text{O})$, at pH 7.0 (•) and pH 3.2 (\bigcirc). Insert: absorbance at 400 nm *versus* pH.

results are in good agreement with the parameters for these semiquinone radicals obtained¹¹ via Reaction 8:

$$(CH3)2COH + MK \rightarrow MK- + CH3COCH3 + H+$$
 (8)

Interestingly enough, the reaction of OH radicals with MK gives a rather similar transient absorption (Fig. 2) to that produced $via\ e_{aq}^{-}$, but with more intense "shoulders". The radical formed is presumably a semiquinone-type and has a p K_a = 4.6 ± 0.1 (insert Fig. 2), similar to that produced via Reaction 6. The rate of formation of the radical on reaction with OH radicals was found to be $k=5.1\cdot10^8\ M^{-1}\cdot s^{-1}$, while the rate of OH radicals with MK as determined using the thiocyanate method was found to be $7.9\cdot10^9\ M^{-1}\cdot s^{-1}$. This difference in rates can be taken to mean that some of the OH radicals add to MK at positions which do not give rise to the semiquinone type of transient absorption.

Reaction of radicals produced from alcohols and sugars

Alcohols and sugars react with a high rate constant⁵ with OH radicals by abstraction of a hydrogen atom, e.g. Reaction 9,

$$OH + RCH2OH \rightarrow RCHOH + H2O$$
 (9)

Depending on the nature of the alcohol and the sugar, abstraction can take place at positions other than the α -position. The RCHOH radicals also undergo acid-base reactions

$$\dot{RCHOH} \rightleftharpoons \dot{RCHO}^- + \dot{H}^+$$
(10)

TABLE I

Ä FFFICIENCY

IN AQUEOUS SOLUTIC	NOI		IN AQUEOUS SOLUTION	CIIC WADICALS 10	MENAQOINON
Alcohol	Hd	pK_a $(radical)^*$	Donor radical**	% Transfer***	Rate $(M \cdot -1_{S-1})$ §
Methanol	7.0	10.7	ĊН2ОН	88.0	3.7.109
	12.4		$\dot{c}_{ m H_2O^-}$	92.0	4.4.109
Ethanol	7.0	11.6	сн,снон	0.06	3.8 · 109
1	12.5		CH3CHO-	92.0	4.2.109
Isopropanol	7.0	12.2	$(CH_3)_2\dot{C}OH$	91.0	4.1.109
	12.4		$(CH_3)_2\dot{C}O^-$	91.0	4.2.109
n-Butanol	7.0		sos sos	32.3	4.1 · 109
	12.7	получ		40.0	4.2.109
tert-Butanol	7.0	> 14 \$ \$ \$	$\dot{\mathrm{CH}}_2(\mathrm{CH}_3)_2\mathrm{COH}$	≥5.0	} !
	12.4		$\dot{\text{CH}}_2(\text{CH}_3)_2\text{COH}$	1 5.0	١
Ribose	6.9	1	·C ₅ H ₉ O ₅ †	0.09	1 4 · 109
Deoxyribose	8.9	I	·C ₅ H ₉ O ₄ †	81.0	2 1 : 109
Ascorbic acid	3.3, 9.0	l		43.0, 38.0	≈1.3·10 ⁹ ;
					3.8.109

* From Asmus et al.13.

** Produced from the reaction of OH radicals with $5 \cdot 10^{-2}$ M alcohols.

*** Values to $\pm 5\%$.

\$ Values to $\pm 10\%$.

\$ Values to $\pm 10\%$.

\$ Mixture of α - and β -hydroxyalkyl radicals.

\$ Mixture of α - and β -hydroxyalkyl radicals.

\$ Mixture of α - and β -hydroxyalkyl radicals.

\$ \text{\$ From Simic et al.6.} \tag{7}.

\$ \text{\$ From Simic and Hayon.2.} \tag{7}.

with pK_a values of 10.7 and higher ^{6,13}. Table I gives the efficiency and rate constants for electron transfer of these radicals to menaquinone. The following points can be made: (i) the transfer of electrons from α -hydroxyalkyl radicals, RCHOH, is quite efficient (>90%) whereas β - or γ -hydroxyalkyl radicals do not transfer to MK; (ii) the transfer from the radical anions RCHO⁻ is even more efficient (>90%); (iii) the radicals from deoxyribose at pH 6.8 are quite efficient in transfering an electron to MK, thus providing a mechanism for the formation of a keto sugar, based on a reaction similar to Reaction 8; (iv) the radicals produced from ascorbic acid ^{14–16} have not been clearly identified, and the low efficiency of transfer (approx. 40%) to MK would appear to indicate the formation of more than one radical from ascorbic acid; (v) the rates of electron transfer to MK are all close to approx. $4.0 \cdot 10^9 \, \text{M}^{-1} \cdot \text{s}^{-1}$.

Reaction of radicals produced from aliphatic acids

The reactions of OH radicals with monobasic and dibasic aliphatic carboxylic acids have been studied recently^{17,18}, and the effect of substituted functional groups examined. The following reactions have been suggested:

$$OH + RCH2COOH \rightarrow RCHCOOH + H2O$$
 (11)

$$\dot{R}CHCOOH \rightleftharpoons \dot{R}CHCOO^- + \dot{H}^+$$
(12)

where R=H or CH₃. When R=OH, e.g. glycolic acid, the radical undergoes additional acid-base reactions:

$$OH + OHCH_2COOH \rightarrow OHCHCOOH + H_2O$$
 (13)

$$OHCHCOOH \rightleftharpoons OHCHCOO^{-} + H^{+}$$
(14)

$$OH\dot{C}HCOO^{-} \rightleftharpoons {^{-}O\dot{C}HCOO^{-}} + H^{+}$$
(15)

and pK_a values of 4.8 and 8.8 have been obtained for Equilibria 14 and 15, respectively.

Table II presents the percentage and rates of electron transfer from various radicals to MK. The following points can be made: (i) hydroxyl radicals react with formic acid to produce ${}^{\circ}\text{CO}_2^{-}$ radicals and these transfer to MK with approx. 100% efficiency, and $k_{17} = 4.8 \cdot 10^9 \, \text{M}^{-1} \cdot \text{s}^{-1}$

$$OH + HCO2^{-} \rightarrow CO2^{-} + H2O$$
 (16)

$$^{\cdot}CO_{2}^{-} + MK \rightarrow ^{\cdot}MK^{-} + CO_{2}$$
 (17)

(ii) the radicals \dot{R} CHCOOH and \dot{R} CHCOO⁻ (where R=H, CH_3 , C_2H_5) essentially do not transfer to MK; (iii) radicals from monobasic acids with α -hydroxyl groups, such as glycolic and lactic acids, do transfer and the efficiency of electron transfer increases on deprotonation of both the carboxyl and hydroxyl groups of the radicals

TABLE II

LIC EFFICIENCY

	Hd	$pK_{\rm a}$ $(radical)$	Donor radical	% Transfer*	Rate
Lormic acid			***		C 747)
1 Office acid	6.9	5.9	CO ₂	≈100	4.8.109
Acetic acid	3.2-10.8	4.5	ĊH2COOH, ĊH2COO-***	06 ≈	;
Propionic acid	3.2-12.4	4.9	CH, CHCOOH. CH, CHCOO-*		
n-Butyric acid	6.5-12.4	8.4	CH3CH2CHCOO-***	-	-
i-Butyric acid	0.9	5.8	(CH ₃), CC00-***	× 15.0	
Pivalic acid	11.0	8.4	CH ₂ C(CH ₃),COO-***		
Glycolic acid	3.2		HOCHCOOH	-	07.108
	6.5	8.4	HOĆHCOO-§	0.69	1.5.109
	10.6	8.8	-ochcoo-	77.0	1,5,109
Lactic acid	3.2		нос(сн3)соон 8	15.0	01.0.1
	6.5	5.3	HOC(CH ₃)COO-8	55.0	1 4 · 109
	10.6	8.6	-0C(CH ₃)C00-\$	72.0	1 9 109
Methyl lactate	3.2		нос(сн ₃)соосн,	20.0	÷
	10.4	1	-0¢(CH ₃)COOCH ₃	74.0	2 3.109
Malonic acid	4.5	5.7	ноосснсоон 8	∞ 7.0	6
	10.8		-00CCHC00-8		
Sucoinic acid	9.2	1	-00CĊHCH2C00-8		
Malic acid	7.0	1	-00CC(OH)CH,COO-	4	1 1 100
Glutaric acid	6.4, 10.9	1	-00CCH,CHC00-	% 5:1: ₹	111 102
Tartaric acid	3.2	4.5	HOOCCH(OH)C(OH)COOH 8		7.0.108
	11.0		-00CH(OH)C(OH)C00-8	0.69	7.0.108
Citric acid	3.2, 10.4	-		2,73	201.0.7
Maleic acid firmaric acid	,,,				1

§ From Simic et al. 18.

* Values to $\pm 5\%$.

** Values to $\pm 10\%$.

*** From Neta et al.17.

 $\dot{RC}(OH)COOH < \dot{RC}(OH)COO^- < \dot{RC}(O^-)COO^-;$ the following reactions are suggested

$$RC(OH)COO^{-} + MK \rightarrow RCOCOO^{-} + MK^{-} + H^{+}$$
(18)

$$R\dot{C}(O^{-})COO^{-} + MK \rightarrow RCOCOO^{-} + MK^{-}$$
(19)

(iv) similar results are obtained with dibasic acids. The radicals from malonic, succinic and glutaric acids essentially do not transfer, whereas the radicals from malic and tartaric acids do transfer to MK. The efficiency of the latter radicals also increases on deprotonation of both the carboxyl and hydroxyl groups; (v) the addition of OH radicals to unsaturated acids, e.g. maleic and fumaric acids, produces β -radicals with respect to the hydroxyl group. Such β -radicals do not transfer (see alcohols above) and essentially no transfer was found (Table II).

Reaction of radicals produced from amino acids and peptides

The sites of attack by oxidizing radicals on aliphatic amino acids and peptides are markedly dependent upon the state of protonation of the various functional groups^{19,20} (Rao, P. S. and Hayon, E., unpublished results), e.g.

$$OH + NH_3CH_2CONHCH_2COOH \rightarrow NH_3CH_2CONHCHCOOH + H_2O$$
 (20)

$$\stackrel{+}{\text{NH}_{3}\text{CH}_{2}\text{CONHCHCOOH}} = \stackrel{+}{\underset{pK_{a} \text{ approx. 5.0}}{}} \stackrel{+}{\text{NH}_{3}\text{CH}_{2}\text{CONHCHCOO}^{-}} + \text{H}^{+} (21)$$

$$OH + NH_2CH_2CONHCH_2COO^- \rightarrow NH_2CHCONHCH_2COO^- + H_2O$$
 (22)

$$NH_2\dot{C}HCONHCH_2COO^- = NH\dot{C}HCONHCH_2COO^- + H^+$$
 (23)

The deprotonation of the peptide hydrogen adjacent to the unpaired electron was established for glycine anhydride²¹:

$$\underbrace{\text{NHCHCONHCH}_2\text{CO} + \text{OH}^-}_{\text{CO}} \rightleftharpoons \underbrace{\text{NCHCONHCH}_2\text{CO} + \text{H}_2\text{O}}_{\text{CO}} \tag{24}$$

with $k_{24} = 8.0 \cdot 10^9 \pm 2.0 \cdot 10^9$ M⁻¹·s⁻¹ and p $K_a = 9.6$. A reaction similar to Reaction 24 was found not to occur for the sarcosine anhydride radical N(CH₃)CHCON(CH₃)CH₂CO.

The efficiency and the rate constants for the formation of •MK⁻ from these radicals are given in Table III. The NH₂CHCOOH radical transfers 71% whereas the NH₃CHCONH₂ radical transfers only 24%. Electron transfer from a radical with an α-amino group was suggested^{11,22} to occur according to Reaction 25

$$NH_2$$
CHCOOH + MK \rightarrow NHCHCOOH + \cdot MK⁻ + H⁺ (25a)

$$NH_2CHCOO^- + MK \rightarrow NHCHCOO^- + MK^-$$
 (25b)

TABLE III

TO

	Hd	pK _a (radical)	Donor radical	% Transfer*	Rate $(M^{-1} \cdot s^{-1})^{**}$
Glycine	5.4	€ 6.4	NH3CHCOO-***	71.0	5.5.109
	8.0		NH2CHCOO-	79.0	$4.0 \cdot 10^{9}$
Glycine amide	3.2	4.3	[†] NH ₃ CHCONH ₂ 8	24.0	3.6.109
	10.4		NH2CHCONH2	41.0	5.4.109
Sarcosine	0.9	1	NH(CH ₃)ĊHCOO-	33.0	$1.1 \cdot 109$
	12.5		$\overline{N}(CH_3)\dot{C}HCOO^-$	64.0	1.7.109
Glycylglycine	9.9	5.0	⁺ _{12-Gly-NHCHCOO-88}	19.0	a.c.
	11.0		NH2CHCO-Gly-O-	47.0	1.2.109
Glycylglycine amide	5.5	≈ 6.7	† H2-Gly-NHCHCONH28	16.0	1
	8.9			25.0	8.5.108
	11.0		NH2CHCO-Gly-NH2	45.0	$8.5 \cdot 10^{8}$
Glycylsarcosine	6.8		[†] _{12-Gly-N(CH₃)CHCOO-8}	20.0	1
	10.9		NH2CHCO-Sar-O-	46.0	$1.0 \cdot 109$
Triglycine		≈ 5.0	⁺ _{12-Gly-Gly-NHCHCOOH 88}		
	7.0		⁺ ₊ -Gly-Gly-NHCHCOO-	11.0	1.8.109
	12.0	≈13.3	NH2CHCO-Gly-Gly-O-888	77.0	1.8.109
Acetylsarcosine	7.0	1	CH ₃ CON(CH ₃)CHCOO-	39.0	1.3 · 109
	12.5	ф	CH ₃ CON(CH ₃)CHCOO-	38.0	1.0.109
Acetyldiglycine	8.9	4.5	Ac-Gly-NHCHCOO-88	4.0	ļ
	12.3			55.0	3.8.109
Acetyltriglycine	0.9		Ac-Gly-Gly-NHCHCOO-8	11.0	

TABLE III (continued)

Colisto			The state of the s		
	Hd	pK_{a} (radical)	Donor radical	% Transfer*	Rate (M-1, 2-1) **
A cotultuiolouis				100 - 1	(18 - 18 - 1
Accepte talanine	6.9		Ac-Ala-Ala-NHCOH ACOS	•	
	12.3	10.0	A A A A A A A A A A A A A A A A A A A	18.0	$2.1 \cdot 10^{9}$
Aectoltrisarcosina	t	10.0	Ac-Ala-Ala-NC(CH ₃)COO-	47.0	2.6.109
	0.7	***************************************	Ac-Sar-Sar-N/CH-) CHCOO-8	0	2
	12.5		A C Con Can Strong Con Can	39.0	•
Acetylserine amide	6.0		***C-Sal-Sar-IN(CH ₃)CHCOO-	39.0	1.3 · 109
	0.6		· 	52.0	1.5.109
				57.0	1 5, 100
	0.11			•	1.7.10
Acetylasparagine	3.2, 6.0		++	0.89	1.9.109
	11.0		- -	≈12.0	
	12.5				
Glycine anhydride	6 9		•	39.0	1.5.109
•	\	9.6	NHCHCONHCH ₂ CO ₁	ijŽ	
	10.9			•	J
			NCHCONHCH ₂ CO	88.0	4.0 · 109
Alanine anhydride	6.9	9.6	NHC/CH-)COMPONION		
	(·		LIC(CH3)CONFICH(CH3)COT	∞ 4.0	1
	10.9		NC(CH3)CONHCH(CH3)CO	75.0	
Sarcosine anhydride	60 100			0.0	3.1.109
	6.5, 10.5	1	N(CH ₃)CHCON(CH ₃)CH ₂ CO [†]	≈ 2.0	1
The second secon			factoria de la constanta de la		

* Values to $\pm 5\%$.
** Values to $\pm 10\%$.

*** From Neta et al.¹⁹.

\$ From Rao and Hayon, unpublished. \$\$ From Simic et al. 20.

§§§ Mixture of radicals, see Simic et al.20.

† From Hayon and Simic²¹. †† Radical uncertain.

It follows, therefore, that the efficiency of electron transfer from a protonated α-amino group $(e.g. \overset{+}{N}H_3 \overset{+}{C}HCONH_2)$ should be considerably lower. The low electron transfer from NH₃CH₂CONHCHCOO⁻ probably gives •MK⁻ and NH₃CH₂-CONCHCOO. The behavior of an α-amino radical in this general mechanism is to transfer an electron effectively when it is in the $NH_2\dot{C}H$ form or the $\bar{N}H\dot{C}H$ form, but not in the NH₃CH form. In support of this mechanism, the deprotonated radicals from glycine and alanine anhydrides transfer efficiently to MK, whereas the sarcosine anhydride radical does not (Table III).

Fig. 3 shows the transient absorption spectra observed on pulse radiolysis of glycine anhydride with MK at pH 10.8. At 0.2 μ s after the pulse one observes part (the rest is masked by the absorption of MK) of the spectrum of the $\overline{\text{NCHCONHCH}}_2\text{CO}$ radical in agreement with earlier results²¹; at 40 μ s after the pulse, maximum electron transfer occurs and one observes a transient similar to that of 'MK and with an

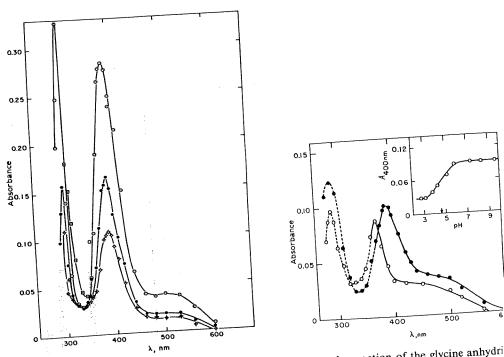


Fig. 3. Transient optical absorption spectra produced from the reaction of the glycine anhydri radicals NHCHCONHCH2CO with MK (5 \cdot 10⁻⁵ M MK, 5 \cdot 10⁻³ M glycine anhydride, 1 atm N₂ at pH 10.8. Absorbance read at 0.2 μs (), 40 μs (), 700 μs () and 1 min. (-) after electrons at pH 10.8. pulse.

Fig. 4. Transient absorption spectra produced from the reaction of CH₃CON(CH₃)CHCO radicals with MK (1·10⁻⁴ M MK, 1·10⁻² M N-acetylsarcosine, 1 atm N₂O) at pH 7.0 (●) pH 3.2 (③). Insert: absorbance at 400 nm versus pH.

TABLE IV

EFFICIENCY AND RATE CONSTANTS OF ELECTRON TRANSFER FROM ALIPHATIC AMINES AND AMIDES TO MENAQUINONE IN AQUEOUS SOLUTION

Ethylamine 7.5 II.6 Isopropylamine 9.0		$pK_{\rm a}$ (radical)	Donor radical*		
	10.10			% Transfer**	Rate $(M^{-1} \cdot s^{-1})^{***}$
	10.10				
		≈ 5.5	ĊH2CH3NH3	10.0	
		≈10.4	CH, CHNH, or CH, CH, NH	34.0	
	_	6.0	8	0.4.0	3.3 · 109
		10.7	(CH ₂), CNH, §	14.0	1 .
I riethylamine 8.0		6.0		41.0	3.6.109
11.6		9.5	w	0.15	
	, 10.9	ŧ	CH, CONH, CH, CONUS	37.0	4.6.109
N-Methylacetamide 6.0,	, 10.9	1	CH, CONHOL 88	≈17.0 .0.5	1.1 · 109
nide	6.0, 10.9		CH3CCINICII233	19.0	2.0 · 109
		5.5	HC(O-)CONH ₂	11.0	2 3.100

* Suggested radical.

** Values to ±5%.

*** Values to ±10%.

§ From Simic et al.23.

§§ From Hayon et al.12.

identical extinction coefficient; the semiquinone radical anion decays to give (in this case only) a permanent product with a spectrum similar to that of •MK-.

The radicals from N-acetylsarcosine and N-acetyltrisarcosine were found to produce 'MK with approx. 35-40% efficiency. Fig. 4 shows the transient spectra produced from the reaction of N-acetylsarcosine with MK. These spectra and the pK_a are closely similar to those produced from the reaction of e_{aq} with MK (Fig. 1). No explanation is presently available to account for the observed transfer of electrons from these radicals (these radicals might be adding to MK or the peptides are impure).

Reaction of radicals produced from aliphatic amines and amides

Hydroxyl radicals react with aliphatic amines to give intermediates which undergo acid-base reactions23. The exact nature of these radicals has not been established. However, reaction with MK occurs (see Table IV) when the amino group is in an α -position to the odd electron and when it is not present in the $\mathrm{NH_3}\mathrm{CH}$ form.

The sites of attack of OH radicals on amides are well characterized¹². Very little transfer occurs (Table IV). The greater (albeit quite small) amount of transfer from the CH₃CONHCH₂ radical compared to CH₃CON(CH₂)CH₃ is probably due to the availability of an amide hydrogen. The radical from glycolamide transfers more efficiently because of the presence of ionized functional groups.

Reaction of radicals produced from aromatic and heterocyclic compounds

Hydroxyl radicals normally add to unsaturated aromatic and heterocyclic compounds. The OH-adducts produced transfer some 20-40% to MK, see Table V

TABLE V EFFICIENCY AND RATE CONSTANTS OF ELECTRON TRANSFER FROM FRE RADICALS OF AROMATIC AND HETEROCYCLIC COMPOUNDS TO MENAQUINON IN AQUEOUS SOLUTION

IN AQUEOUS SOLUTION Solute	pН	Donor radical	% Transfer*	Rate $(M^{-1} \cdot s^{-1})^{**}$
Phenol Tyrosine Phenylalanine Tryptophan Indole Aniline Nicotinamide N'-Methylnicotinamide N,N-Diethylnicotinamide Imidazole Histidine	3.0 5.8, 7.1 7.7, 9.1, 11.2 6.8, 9.2 6.8 7.0 7.0, 10.9 6.8 11.4 7.0 10.9 7.1, 11.1 6.9 6.9	OH radical adduct	34.0 39.0-44.0 32.0-37.0 ≈ 5.0 ≈ 20.0 ≈ 20.0 26.0 12.0 20.0 20.0 35.0 27.0, 30.0 84.0 88.0	$3.8 \cdot 10^9$ $3.3 \cdot 10^9$ $\approx 4.0 \cdot 10^9$ $ 2.8 \cdot 10^9$ $2.9 \cdot 10^9$ $4.0 \cdot 10^9$ $ \approx 2.9 \cdot 10^9$ $2.7 \cdot 10^9$ $3.0 \cdot 10^9$ $2.8 \cdot 10^9$ $1.6 \cdot 10^9$ $1.2 \cdot 10^9$

^{*} Values to $\pm 5\%$.

^{**} Values to $\pm 10\%$.

In most of these cases, the odd electron is in a β -position to the OH group. Such a radical was shown above not to transfer to MK. Addition of OH to phenol and tyrosine produces phenoxyl radicals RO• (Land and Ebert²⁴, Feitelson and Hayon²⁵). The subsequent reactions with MK are not clear. It is interesting to point out that some of the OH-adducts of pyrimidine bases do react effectively with MK, and the efficiency of electron transfer was found to depend on the pyrimidine base itself and on the various tautomeric forms of the radicals¹¹. Similarly, the OH-adducts to imidazole and histidine transfer effectively to MK (Table V). In these cases, the heterocyclic nitrogen is probably involved in the electron transfer.

Reaction of radicals produced by addition of e_{aq}^{-} to various organic compounds

Hydrated electrons are reactive species and interact with various molecules, usually (a) by addition, to give radical anions which may protonate (depending on the pH of the experiment and the pK_a of the radical) to give the radical, or (b) the molecule undergoes dissociative electron capture to form a radical unrelated to that of the parent compound, e.g. $e_{aq}^- + RCl \rightarrow [RCl^-] \rightarrow R^+ + Cl^-$.

Radicals produced by Method a above were made to react with MK (see Table VI), and in almost all cases the percentage of electron transfer was >90% and the rate approx. $4\cdot10^9-5\cdot10^9$ M⁻¹·s⁻¹. Electrons add to ketocarboxylic acids (e.g. acetoacetic acid, α -ketoglutaric acid) to produce the corresponding α -alcohol radical:

$$e_{aq}^- + RCOCOO^- \rightarrow R\dot{C}(O^-)COO^-$$
 (26)

$$R\dot{C}(O^{-})COO^{-} + H^{+} \rightleftharpoons R\dot{C}(OH)COO^{-}$$
(27)

$$\dot{RC}(OH)COO^{-} + MK \rightarrow RCOCOO^{-} + \dot{M}K^{-} + H^{+}$$
(28)

Similarly, e_{aq}^- add to nicotinamide, NAD⁺ and other related pyridine compounds, presumably at the ring²⁶ (Bruhlmann, U. and Hayon, E., unpublished results) and protonate rapidly to produce pyridinyl radicals. These latter radicals are found to transfer with a high rate constant to MK, Table VI. The considerable increase in the efficiency of transfer of the electron adducts of Phe–NH₂ < Tyr–NH₂ < Try–NH₂ is most interesting (Table VI) and suggests that the electrons add to the ring in Tyr–NH₂ and Try–NH₂ but not in Phe–NH₂. These conclusions are in agreement with other results²⁵ (Mittal and Hayon, E., unpublished work). The efficient transfer from imidazole and histidine (Table IV) again suggests addition of e_{aq}^- to the ring and electron transfer from the cyclic nitrogen.

Addition of electrons to peptide linkages (e.g. dicyclic anhydrides) produces short-lived intermediates²¹ which transfer effectively to MK.

$$-C(OH)NH - + MK \rightarrow -COHN - + \cdot MK^{-} + H^{+}$$
(29)

Since sarcosine derivatives -CON(CH₃)- transfer as well and as fast as -CONH-derivatives, it follows that the peptide hydrogen is not involved in these reactions.

ELECTRON ADDUCTS TO MENAQUINONE IN

TABLE VI	STANTS OF ELECT	TABLE VI TAB			
EFFICIENCE AND MAIS			o/ Transfer**	Rate	
Solution	Hd	Donor radical*	(a) (a) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	$(M^{-1} \cdot S^{-1})^{***}$	
Solute				2.5.109	
	ć	-0-C-(-C00 ⁻) ₂	94.0	3.1.109	
Ketomalonic acid	2.6	-00CCH2C(OH)COO-	0.76	3.7 · 109	
Oxaloacetic acid	2:0	CH3C(0-)CH2C00-	94.0	3.8 · 109	
Acetoacetic acid	2.6	-00C(CH ₂) ₂ -C(0-)C00-	97.0	5.1 · 109	
α-Ketoglutaric acid	7, 10.9		0.66	4.9.109	
Nicotinamide	6.8, 10.9	w	0.66	4.1.109	
N'-Methyl nicotinamide	7.0	w	0.66	4.4 · 109	
Diethyl nicotinamide	5.5	wa.	0.66	3.1 · 109	
Nicotinic acid	6.2	NAD.8	0.86	4.9.109	
NAD+	69	NHCH2C(OH)NHCH2COss		90	
Glycine anhydride	}	CHICHIOHINHCH(CH ³)CO ^{§§}	92.0	4.8.103	
	0.9	NHCH(CH ₃)C(OH)MICH(CH ₂)		4 6 . 109	
Alanine anhydride		CH JCH JCHJN(CH 1)CH2CO§§	91.0	21 0:	
4 TT	0.9	N(CH ₃)Ch ₂ C(Ott) (Ct ₂)	0.66	2.7 · 109	
Sarcosine anhydride	0		< 10.0	1	
Acetyl glycylglycine amide	0:7	1	38.0	1.5.109	
phenylalanine amide	6.0		70.0	2.0 · 109	
Tyrosine amide			98.0	1.2.109	
Tryptophan amide	6.9	1	97.0	$1.2 \cdot 10^{9}$	
Imidazole	6.9	1			
Histidine			oiber to seed !	of radical -C- or -C- is not	
		OH radio	cals; nature or rear		

* Produced by reaction of e_{aq} with solute, in presence of 1.0 M tert-butanol to scavenge OH radicals; nature of radical $-\dot{C}$ - or - known for certain in some cases.

** Values to $\pm 5\%$.

*** Values to $\pm 10\%$.

\$\frac{\\$}{\\$} \text{Electron presumably adds to the pyridine ring and is rapidly protonated (Brühlmann, U. and Hayon, E., unpublished results).

\$\frac{\\$}{\\$} \text{From Hayon and Simic}^{21}.

Reactions of odd-valent inorganic radicals

Divalent transition metal ions react with $e_{\rm aq}^-$ very fast⁵ and the products of this reaction are monovalent ions in their ground state.

$$M^{2+} + e_{aq}^{-} \rightarrow M^{+}$$
 (30)

The formation of Co⁺, Ni⁺, Zn⁺, Cd⁺ have been demonstrated by pulse radiolysis²⁷. The chemical behavior of these unique reduced species with MK has been studied, see Table VII. The monovalent ions react with MK very efficiently, approx. 90–100% transfer, and with high rates of electron transfer:

$$M^+ + MK \rightarrow M^{2+} + MK^-$$
 (31)

Fig. 5 shows the transient spectra of the radicals produced from the reaction of Co⁺ with MK. The absorption spectra and the p K_a of the radical (insert Fig. 5) are in excellent agreement with the radicals 'MK⁻ and 'MK⁻-H⁺ produced from reaction with e_{aq} .

TABLE VII

EFFICIENCY AND RATE CONSTANTS OF ELECTRON TRANSFER FROM ODDVALENT INORGANIC SPECIES TO MENAQUINONE IN AQUEOUS SOLUTION

Inorganic ions	pΗ	Donor radical*	% Transfer**	Rate $(M^{-1} \cdot s^{-1})^{* \cdot *}$
Cobalt sulfate	7.3	Co+	99.0	4.0 · 109
Nickel sulfate	7.0	Ni ⁺	95.0	
Lead perchlorate	7.2	Pb+	94.8	2.5 · 109
Zinc sulfate	7.1	Zn+	97.3	3.7.109
Cadmium sulfate	7.0	Cd+	99.0	3.8 · 109
Silver sulfate	7.0	Ag°	24.0	4.6 · 109
Copper sulfate	8.0	§	20.3	White seads
	10.6	§	39.0	
Cupric perchlorate	9.0, 10.6	§	40.0	2.0 · 109
Thallous sulfate	6.8	T12+§	14.0	2.0.109
Potassium iodide	7.0	I ₂ -§	Nil	
Potassium bromide	7.0	Br ₂ -§	Nil	
Sodium carbonate	11.8	CO ₃ -§	Nil	
Hydrazine sulfate	7.8, 11.2	N_2H_3 §	Nil	
Hydroxylamine	7.0	NHOH§	Nil	*********

^{*} Produced from the reaction of e_{aq} with $5 \cdot 10^{-3}$ M inorganic ions.

Many biological oxidation-reduction reactions require metal ions. Reactions similar to Reaction 31 might also be of some importance in the redox reactions of metalloenzymes (e.g. cytochrome, vitamin B12 etc.).

The odd valent ions of silver and copper do not appear to react as effectively. The efficiency of electron transfer appears to be dependent upon the pH and upon

^{**} Values to $\pm 5\%$.

^{***} Values to $\pm 10\%$.

[§] Produced from reaction with OH radicals.

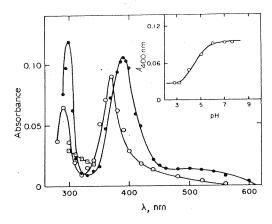


Fig. 5. Transient absorption spectra produced from the reaction of Co⁺ radicals with MK $(5\cdot 10^{-5} \text{ M MK}, 5\cdot 10^{-3} \text{ M CoSO}_4, 0.5 \text{ M tert-butanol}, 1 \text{ atm Ar})$, at pH 7.3 (•) and pH 3.2 (•). Partial absorption spectrum of Co⁺ shown (•). Insert: absorbance at 400 nm *versus* pH.

CONCLUSIONS

the anion used. These odd-valent ions might be complexed (e.g. $Ag^{\circ} + Ag^{+} \rightarrow Ag_{2}^{+}$) and become poor electron donors. The radicals I_{2}^{-} , Br_{2}^{-} , I_{2}^{-} , Tl^{2+} , CO^{-} , $N_{2}H_{3}$ and CO_{3}^{-} , NHOH were produced, on reaction of the corresponding compounds with OH radicals, but were found not to transfer an electron to MK.

A survey of the oxidation-reduction reactions of a wide range of organic and inorganic free radicals has been covered in this work. Using menaquinone as a typical electron acceptor, these results have indicated the characteristics of the various types of free radicals which do and which do not interact effectively with menaquinone. The efficiency of electron transfer and the rates of electron transfer are considered to be dependent upon both the redox potential of the free radicals and the redox potential of the acceptor. Indeed, it is presumably the difference ΔE_0 which is of importance. Under the experimental conditions (low doses and low concentration of free radicals) used, > 90% of the RH• and RH₂• radicals produced are expected to react with the acceptor, assuming k_4 and k_5 are $\ge 2 \cdot 10^8$ M⁻¹·s⁻¹. The low percentage of electron transfer to menaquinone observed with some radicals could be due to (a) the formation of more than one species (e.g. from the reaction of OH radicals with ascorbic acid, ribose and aromatic and heterocyclic compounds), (b) each radical species has a different redox potential; (c) reaction of the radical with menaquinone does not lead to the formation of the semiquinone radical and (d) the k_4 and k_5 values for electron transfer to MK are very low, $\ll 1 \cdot 10^8 \text{ M}^{-1} \cdot \text{s}^{-1}$, and the radicals undergo instead radical-radical reactions.

While the above results have been interpreted as electron transfer reactions, one cannot exclude the possibility that some of these radicals can add to the quinone and produce similar semiquinone radicals. It is interesting to point out that the reaction of a free radical with a quinone could also be used to identify the nature of the free radical produced based on the known efficiency and rate of electron transfer of various functional groups in an α -position to the odd electron.

REFERENCES

- 1 Blois, Jr, M. S., Brown, H. W., Lemmon, R. M., Lindblom, R. O. and Weissbluth, M. (1961) Free Radicals in Biological Systems, Academic Press, New York
- 2 King, T. E. and Klingenberg, M. (1971) Electron and Coupled Energy Transfer in Biological Systems, Parts 1A and 1B, M. Dekker, New York
- Nakamura, M. and Yamazaki, I. (1972) Biochim. Biophys. Acta 267, 249-257 (and earlier
- 4 Morton, R. A. (1965) Biochemistry of Quinones, Academic Press, New York
- 5 Anbar, M. and Neta, P. (1967) Int. J. Appl. Radiat. Isot. 18, 493-523
- 6 Simic, M., Neta, P. and Hayon, E. (1969) J. Phys. Chem. 73, 3794-3800
- 7 Keene, J. P., Black, E. D. and Hayon, E. (1969) Rev. Sci. Instrum. 40, 1199-1201 8 Hayon, E. (1969) J. Chem. Phys. 51, 4881-4892
- 9 Hayon, E., Ibata, T., Lichtin, N. N. and Simic, M. (1972) J. Phys. Chem. 76, 2072-2078 10 Willson, R. L. (1971) Chem. Commun. 1249-1250
- 11 Hayon, E. and Simic, M. (1973) J. Am. Chem. Soc., in the press
- 12 Hayon, E., Ibata, T., Lichtin, N. N. and Simic, M. (1970) J. Am. Chem. Soc. 92, 3898-3903
- 13 Asmus, K. D., Henglein, A., Wigger, A. and Beck, G. (1966) Ber. Bunsenges. Phys. Chem. 70, 14 Lagercrants, C. (1964) Acta Chim. Scand. 18, 562
- 15 Bielski, B. H. J., Comstock, D. A. and Bowen, R. A. (1971) J. Am. Chem. Soc. 93, 5624-5629 16 Schöneshöfer, M. (1972) Z. Naturforsch. 27b, 649-659
- 17 Neta, P., Simic, M. and Hayon, E. (1969) J. Phys. Chem. 73, 4207-4213
- 18 Simic, M., Neta, P. and Hayon, E. (1969) J. Phys. Chem. 73, 4214-4219
- 19 Neta, P., Simic, M. and Hayon, E. (1970) J. Phys. Chem. 74, 1214-1220 20 Simic, M., Neta, P. and Hayon, E. (1970) J. Am. Chem. Soc. 92, 4763-4768
- 21 Hayon, E. and Simic, M. (1971) J. Am. Chem. Soc. 93, 6781-6786
- 22 Simic, M. and Hayon, E. (1972) Int. J. Radiat. Biol. 22, 507-511
- 23 Simic, M., Neta, P. and Hayon, E. (1971) Int. J. Radiat. Phys. Chem. 3, 309-320 24 Land, E. J. and Ebert, M. (1967) Trans. Faraday Soc. 63, 1181-1190
- 25 Feitelson, J. and Hayon, E. (1973) J. Phys. Chem. 77, 10-16
- 26 Land, E. J. and Swallow, A. J. (1968) Biochim. Biophys. Acta 162, 327-336
- 27 Baxendale, J. H., Fielden, E. M. and Keene, J. P. (1965) Proc. R. Soc. London A286, 320-331